Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 9(56): 32581-32593, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35529743

RESUMO

In the recovery of rare earth elements (REE) microbial biosorption has shown its theoretical ability as an extremely economically and environmentally friendly production method in the last few years. To evaluate the ability of two cyanobacterial strains, namely Anabaena spec. and Anabaena cylindrica to enrich dissolved trivalent REE, a simple protocol was followed. The REE tested in this study include some of the most prominent representatives, such as europium (Eu), samarium (Sm) and neodymium (Nd). Within the experiments, a fast decrease of the REE3+ concentration in solution was tracked by inductively coupled plasma mass spectrometry (ICP-MS). It revealed an almost complete (>99%) biosorption of REE3+ within the first hour after the addition of metal salts. REE3+ uptake by biomass was checked using laser-induced breakdown spectroscopy (LIBS) and showed that all three selected REE3+ species were enriched in the cyanobacterial biomass and the process is assigned to a biosorption process. Although the biomass stayed alive during the experiments, up to that, a distinction whether the REE3+ was intra- or extracellularly sorbed was not possible, since biosorption is a metabolism independent process which occurs on living as well as non-living biomass. For europium it was shown by TEM that electron dense particles, presumably europium particles with particle sizes of about 15 nm, are located inside the vegetative cyanobacterial cells. This gave clear evidence that Eu3+ was actively sorbed by living cyanobacteria. Eu3+ biosorption by cell wall precipitation due to interaction with extracellular polysaccharides (EPS) could therefore be excluded. Finally, with XRD analysis it was shown that the detected europium particles had an amorphous instead of a crystalline structure. Herein, we present a fast biosorptive enrichment of the rare earth elements europium, samarium and neodymium by Anabaena spec. and Anabaena cylindrica and for the first time the subsequent formation of intracellular europium particles by Anabaena spec.

2.
Beilstein J Nanotechnol ; 7: 312-27, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27335727

RESUMO

Microbial biosynthesis of metal nanoparticles as needed in catalysis has shown its theoretical ability as an extremely environmentally friendly production method in the last few years, even though the separation of the nanoparticles is challenging. Biosynthesis, summing up biosorption and bioreduction of diluted metal ions to zero valent metals, is especially ecofriendly, when the bioreactor itself is harmless and needs no further harmful reagents. The cyanobacterium Anabaena cylindrica (SAG 1403.2) is able to form crystalline Au(0)-nanoparticles from Au(3+) ions and does not release toxic anatoxin-a. X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and laser-induced breakdown spectroscopy (LIBS) are applied to monitor the time-dependent development of gold nanoparticles for up to 40 hours. Some vegetative cells (VC) are filled with nanoparticles within minutes, while the extracellular polymeric substances (EPS) of vegetative cells and the heterocyst polysaccharide layer (HEP) are the regions, where the first nanoparticles are detected on most other cells. The uptake of gold starts immediately after incubation and within four hours the average size remains constant around 10 nm. Analyzing the TEM images with an image processing program reveals a wide distribution for the diameter of the nanoparticles at all times and in all regions of the cyanobacteria. Finally, the nanoparticle concentration in vegetative cells of Anabaena cylindrica is about 50% higher than in heterocysts (HC). These nanoparticles are found to be located along the thylakoid membranes.

3.
Anal Bioanal Chem ; 400(10): 3273-8, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21359571

RESUMO

In this work, the Stark effect is shown to be mainly responsible for wrong elemental allocation by automated laser-induced breakdown spectroscopy (LIBS) software solutions. Due to broadening and shift of an elemental emission line affected by the Stark effect, its measured spectral position might interfere with the line position of several other elements. The micro-plasma is generated by focusing a frequency-doubled 200 mJ pulsed Nd/YAG laser on an aluminum target and furthermore on a brass sample in air at atmospheric pressure. After laser pulse excitation, we have measured the temporal evolution of the Al(II) ion line at 281.6 nm (4s(1)S-3p(1)P) during the decay of the laser-induced plasma. Depending on laser pulse power, the center of the measured line is red-shifted by 130 pm (490 GHz) with respect to the exact line position. In this case, the well-known spectral line positions of two moderate and strong lines of other elements coincide with the actual shifted position of the Al(II) line. Consequently, a time-resolving software analysis can lead to an elemental misinterpretation. To avoid a wrong interpretation of LIBS spectra in automated analysis software for a given LIBS system, we recommend using larger gate delays incorporating Stark broadening parameters and using a range of tolerance, which is non-symmetric around the measured line center. These suggestions may help to improve time-resolving LIBS software promising a smaller probability of wrong elemental identification and making LIBS more attractive for industrial applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...